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A model is proposed for describing the dynamics of glass-fiber extrusion, and on 
its basis are determined the amplitude--frequency characteristics of the produced 
fiber cross-section, depending on technological perturbations. The effect of 
viscous relaxation on the magnitude of residual stresses in a multilayer optical 
fiber is also evaluated on this basis. 

i. Imposing stringent constraints on the nonuniformity of parameters of an optical 
glass fiber so as to minimize the power lost by light beams propagating through it requires 
a mathematical model of the fiber-forming process. Nonuniformity of the parameters of an 
extruded fiber is a consequence of the system response to various external perturbations 
influencing the extrusion process; hence mathematical models describing this response are a 
matter of utmost interest. 

In this report will be presented results of a study concerning the effect of perturba- 
tions on the characteristics of an extruded fiber. Usually the extrusion of a glass fiber 
is described in terms of a problem in hydrodynamics for jet flow of an incompressible New- 
tonian fluid with a temperature-dependent viscosity, this dependence as well as the tem- 
perature distribution assumed to be known. Unlike in earlier studies (e.g., [1-3]), where 
the Navier--Stokes equation was used as the point of departure, here we will use methods of 
nonlinear thermomechanics [4] which have yielded the dimensionless equation of motion of a 
fiber during its deformation: 

Yzzgt - -  YztYz ---- ~]% (t)Yz, (I) 

with the function y(z, t) of one space coordinate and of time called "movement," ~(z, t) 
denoting the fluidity, and the arbitrary function %(t) of time only determined from the 
boundary conditions (subscripts denote differentiation with respect to the corresponding 
variable). 

The observable dimensionless variables, namely velocity v and fiber cross section s, 
can be expressed through "movement" according to the relations 

gt (2) s =  yz; v - -  - - .  

g~ 

We will consider only weak irregularities in the process, those which do not drasti- 
cally alter the conditions of extrusion in the steady state, and therefore will apply the 
methods of perturbation theory to small deviations from steady "movement" 

0 0 

caused by small transient changes in the problem input parameters. 
equation for the correction P(z, t) to steady motion, in the first approximation, 

Pzz + =~lPz + e-~(z)Pzt + w~]e-=~(z)Pt -~ - -  (w~ + ~ (t)) e -w~(z) 

under boundary conditions 

a) P (z, O)= O, 
b) .Pz (0, l) = ~ (t), 

(3) 

We thus arrive at the 

(4) 
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o) p, (o, t) = - - ,  (t) - -  q~ (t), 
a) Pt(1, t)=e=p~(1, t)--e-~)~(t). (5) 

Here v(z, t) is the fluidity perturbation, ~(t) is the perturbation of initial cross section, 
~(t) is the perturbation of initial velocity, X(t) is the perturbation of the extrusion rate, 
and ~(t) is an arbitrary function of time determined from boundary condition (5d). 

Problem (4)-(5) can be solved analytically for the case of uniform fluidity along the 
deformation zone (n = 1 for z~[0, I]) For this case there have been considered four kinds of 
prolems : 

I) perturbation of the steady state by small transient changes of initial velocity 

(v=O, ~=0,  ~=0) ;  

I I )  p e r t u r b a t i o n  o f  t h e  s t e a d y  s t a t e  by  s m a l l  t r a n s i e n t  c h a n g e s  o f  t h e  e x t r u s i o n  r a t e  
(~,=0, ~ = 0 ,  , = 0 ) ;  

I I I )  p e r t u r b a t i o n  o f  t h e  s t e a d y  s t a t e  by  s m a l l  t r a n s i e n t  c h a n g e s  o f  i n i t i a l  c r o s s  s e c -  
t i o n  (v=O,  ~ ,=0 ,  x = O ) ;  

IV) perturbation of the steady state by small transient changes of viscosity 

(q~= o, , = o ,  z = o ) .  
The general solution to Eq. (4) is 

1_ e--WX+t 

k d k  \ a~ J 
0 t 

S o l u t i o n  o f  a n y  o f  t h e  p r o b l e m s  1 - I V  r e d u c e s  t o  d e t e r m i n a t i o n  o f  t h e  a r b i t r a r y  f u n c t i o n s  
f ,  c ,  a n d  ~ i n  t h e  g e n e r a l  s o l u t i o n  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  ( 5 ) .  F u n c t i o n  ~ ( t )  c a n ,  by  
v i r t u e  o f  c o n d i t i o n  ( 5 d ) ,  b e  c a l c u l a t e d  f r o m  t h e  i n t e g r a l  e q u a t i o n  

t 

~ p. (s) le ([ - -  s) ds - -  1_1_ (e w _ 1) ~ (t) = f (t), (7)  

0 

w h e r e  f ( t )  i s  a n  e x p r e s s i o n  d e s c r i b i n g  one  o f  t h e  p e r t u r b a t i o n s  and  

1 --e~(l -- ws) sE[0, + (l --e~)], 

k (s) - -  (1 -- ws) = 

o sC['w (,_e-w), oo]. 
Most attention was paid to periodic perturbations of the asin ~t form. Of practical 

interest in this case are the amplitude--frequency characteristics of the system reaction to these per- 
turbations, viz., the ratio of the amplitude of relative variations of the extruded fiber 
cross section to the relative amplitude of perturbations as a function of the perturbation 
frequency m. Closed analytical expressions describing those amplitude--frequency character- 
istics have been obtained for all four kinds of problems. 

As an example we will show here one of the simplest characteristics, describing the 
amplitude of variations of the fiber cross section at the exit from the deformation zone as 
a function of the frequency of extrusion rate fluctuations: 

e-w 
A(~o)=a M 2 + L  ~ ] / ( M C + L S )  2 + ( M S + L C ) 2 ,  (8)  

with the notation 

L = b IS cos (Q - -  W) - -  (C sin (~2 - -  ~)1 + e ~ (cos ff~l - -  1); 

M = b IS sin (f2 - -  q0) + C cos (f2 - -  ~)] + e ~ sin ffJl; 

Q=o~/w; l---- 1 - - e  - ~ ,  S = s i Q e  - w - s i Q ;  C=ciDe - w - c i Q ;  

b = V Q 2 + e 2 ~ ;  s i n ~ = e  ~ /b ;  c o s ~ =  Q/b. 

The initial ranges of these amplitude--frequency characteristics are shown in Fig. i. 
The amplitude--frequency characteristic of the process response to perturbations of initial 
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Fig. i. Amplitude-frequency characteristics 
of system response, in terms of extruded fiber 
cross section, to periodi c variation of ex- 

trusion rate (a), to periodic nonuniformity of 
initial cross section (b), and to periodic 
variations of viscosity (c): scale of ordi- 
nates 0.0555 (a); 4.326 (b); 4.448 (c). 
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Fig. 2. Amplitude--frequency characteristics of system re- 
sponse in terms of extruded fiber cross section to perturba- 
tions of the extrusion rate in case of nonuniformly distributed 
viscosity: a) a = i; b) a = 0.i. 

Fig. 3. Schematic diagram depicting extrusion of double-layer 
fiber. 

velocity is not shown here, because it is identical to the corresponding characteristic for 
perturbation of the extrusion rate. 

For the case of a viscosity varying along the z axis we solved Eq. (4) numerically, 
with the fluidity distribution simulated by the relation 

r I (Z) = 1 Ct 2 ' 1 1 ' 
z - - .  - -  + a  2 

2 a arctg 2a 1 "-b a ~ 1 + 2 4 

4 a ~ 

and the parameter a here characterizing the "slope" of decay of the dimensionless fluidity 
to zero at the boundary of the deformation zone. The amplitude--frequency characteristics of 
the system response to perturbation of the extrusion rate with parameter a equal to 1.0 and 
0.i, respectively, are shown in Fig. 2. 

1348 



It must be emphasized, first of all, that the system response to perturbations is of an 

aftereffect nature with a finite "period of memory lapse" T ~--! (l--e-w). In dimensional 

form and considering that e -w is smaller than unity, this period will be F~'~.~/Vo In vb/Vo~_20 
sec for typical values of the process parameters ~= 15 cm, vo = 0.i cm/sec, and v b = i00 
cm/sec. This period represents the time in which a material point travels from the beginning 
to the end of the deformation zone. Naturally, any perturbations of process parameters in a 
material point located at the beginning of the deformation zone will affect the parameters of 
extruded fiber as long as this "perturbed" material point remains in the deformation zone 
and, therefore, a perturbation affects the trend of the process or~ more precisely, its trend 
during the period of T. When the perturbations acting on the system are regular, then regu- 
larization of the system response occurs within time T from the instant the "perturbation" 

has been switched on. 

The model of the extrusion process which we propose here describes mathematically this 
rather obvious physical nature of the system response to perturbations, earlier models [i, 

2] having failed to do so. 

An analysis of the expressions for the amplitude--frequency characteristics and of the 
graph in Fig. 1 depicting the initial segments of these characteristics indicates that the 
system response to perturbations is one with a distinct resonance feature, peaking at fre- 
quencies approximately equal to multiples of the inverse time taken by a material point 

to move through the deformation zone. 

These results also lead to conclusions which are valid regardless of the stipulated 
fluidity distribution. Namely, the system response to perturbations of initial cross sec- 
tion and of fluidity is much stronger than the response to perturbations of the extrusion 
rate. Furthermore, at low perturbation frequencies the extruded fiber cross section dupli- 
cates the perturbations of the extrusion rate and of the original fiber cross section while 
remaining independent of viscosity perturbations. At high perturbation frequencies, on the 
other hand, the system response to perturbations of the extrusion rate decays, while the 
the response to perturbations of the original fiber cross section and of viscosity approaches 

a finite limit. 

Numerical calculations for the case of variable viscosity have revealed that the exis- 
tence of peaks in the amplitude--frequency characteristics is entirely due to unevenness of 
the fluidity distribution at the boundaries of the deformation zone and that these peaks 
vanish as this distribution becomes smoother with a correspondingly decreasing parameter a. 
They have also revealed that the high-frequency response tends to weaken noticeably as the 

fluidity distribution becomes smoother. 

2. When multilayer optical fibers are extruded~ differences between the thermoelastic 

properties of individual layers produce large residual stresses in the fiber during the 
cooling process and these stresses strongly influence the strength characteristics of the 
final fiber. The effect of these stresses is so appreciable that sometimes the strength of 
a fiber after extrusion eventually drops to nearly zero. Precisely for this reason it is 
important to know how to calculate the distribution of residual stresses in a fiber and on 
that basis to determine the strengthwise optimum extrusion mode. Such calculations are 
usually made according to the standard theory of thermoelasticity, the one-dimensional 
model being quite adequate in this case of a very large length-to-width ratio. In the ex- 
trusion process there often arises a situation, however, where inside the already solidified 
quartz l~yer there still remains a not yet solidified mass (quartz glass). In stress calcu- 
lations for this case one usually assumes that there are no shearing stresses in the liquid 
and that the latter responds to changes of the cavity volume by changes of pressure only 
[5]. Considering that the magnitude of this pressure is of the order of l0 s kgf/cm 2, owing 

to different thermal expansivities of the liquid core and the solid shell, one can expect 
that, despite the high viscosity of the liquid and the small inside diameter of the shell, 
such a large pressure difference can cause viscous flow of the melt inside the shell and 
this, in turn, will result in a redistribution of pressure. 

In this study an attempt was made to estimate the effect of such a viscous stress re- 
laxation during extrusion on the distribution of residual stresses at the instant the fiber 
has completely solidified. The model of this phenomenon was simplified for this purpose so 
that it would yield the necessary results in analytical form and, at the same time, rather 
accurately describe the real process~ 
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We considered extrusion of a double-layer optical fiber during the period from 
solidification of the shell to solidification of the core. In a real process this corre- 
sponds to a change of the temperature from 1800 to 1500~ over the length of a few centi- 
meters (in the case of a quartz shell and a quartz glass core). 

The following model of the extrusion process was used for calculations. A tube with 
perfectly rigid walls and an inside radius ro moves along the z axis, which is its own axis, 
at velocity v b (Fig. 3). The tube is filled with liquid whose viscosity ~ and temperature 
T are functions of the z coordinate and do not vary in time (in a stationary system of coor- 
dinates). The density p of the liquid inside this tube depends on pressure p and on temper- 
ature T in accordance with Hooke's law and the law of thermal expansion. At distance ~o 
from the origin of coordinates the liquid inside the tube solidifies at temperature T T. 
There is no tube in the z < 0 half-space, which means the tube wall forms all the time at 
the origin of coordinates. The pressure of liquid at the tube entrance is Po. 

On the basis of this model was formulated the problem 

a (z) 
- -  =- --a(z) • (z)-- Tr ), (9 )  

dz E 
where ~(z)=p(z)--p(lo), a(z)= (24vb/ro 2) ~; ~ is the coefficient of thermal expansion for 
core material, and E is its modulus of elasticity. The boundary condition is P(Zo) = O. 
The solution of this problem is 

tf dT (X)d___~ exp [-- S .a(%)E d~ ] dx}. (10 )  p (z) -- p (lo) = xE I IT (z) - -  rr + 
Z 

For rough numerical estimates it is permissible to replace the real viscosity distribu- 
tion (Fig. 3) with a "rectangular" one, as shown with the dashed line on the diagram. Assum- 
ing now a linear distribution and small corrections for viscous relaxation, we obtain from 
relation (i0) the estimate 

Ap=p(O)__p(O=• 1 Er~ } 
24 vbp'l~ ' (11) 

w i t h  p a r a m e t e r s  V' and  l o '  i n d i c a t e d  on  t h e  d i a g r a m .  The  e f f e c t  o f  v i s c o u s  r e l a x a t i o n  c a n ,  
a c c o r d i n g l y ,  b e  e s t i m a t e d  a s  

Ap ~ - -  Ap Zr~ 
- -  (12) ~p| 24vbp'lo ' 

w h e r e  Ap = i s  t h e  p r e s s u r e  d r o p  w i t h  v i s c o u s  r e l a x a t i o n  d i s r e g a r d e d  a n d  t h u s  w i t h  ~ '  = = i n  
e x p r e s s i o n  ( 1 1 ) .  F o r  t h e  t y p i c a l  v a l u e s  o f  p a r a m e t e r s  i n  e x p r e s s i o n  (12 )  E = 7"10  ~~ N/m a ,  
ro  = 10 - ~  m, Vb = 1 m / s e t ,  l '  = 0 . 0 7  m, ~ '  = 6"103  Pa we e s t i m a t e  t h e  e f f e c t  o f  v i s c o u s  r e -  
l a x a t i o n  t o  b e  

AP| 7 %. 
Ap ~ 

Therefore, under certain conditions of extrusion, the redistribution of residual 
stresses due to viscous flow of the glass mass in a liquid layer surrounded by solidified 
ones can become appreciable enough to influence the strength characteristics of the produced 
fiber. 

l. 

2. 

3. 

4. 
5. 
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